Sweeping Algorithms for Five-Point Stencils and
Banded Matrices*

Technical Memorandum ANL/MCS-TM-165, June 1992

Man Kam Kwong

Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, 1L 60439-4844

Email: kwongmecs.anl.gov

Abstract

We record MATLAB experiments implementing the sweeping algo-
rithms we proposed recently to solve five-point stencils arising from the
discretization of partial differential equations, notably the Ginzburg-
Landau equations from the theory of superconductivity. Algorithms
tested include two-direction, multistage, and partial sweeping.

*This work was supported by the Office of Scientific Computing, U.S. Department of
Energy, under Contract W-31-109-Eng-38.



1 Introduction

In [3] we proposed a method of sweeping for solving five-point stencils. Our
work is motivated by our numerical study of the Ginzburg-Landau equations
that arise in the theory of superconductivity. Nevertheless, the sweeping
method is applicable to many generic five-point stencils derived from dis-
cretizing other partial differential equations. Particularly promising is the
fact that a substantial portion of each algorithm is parallelizable.

In this article, we describe our experience in implementing the proposed
methods. Part of the work was done with the help of Shirin Bar-Sela, who
was a participant in the spring 1992 Student Research Participation Program
at Argonne National Laboratory and who is currently an undergraduate at
the University of Houston, Downtown.

At the preliminary stage of investigation, we chose MATLAB as our
environment for experimenting, because of its convenient language features
rendering program development simpler than in Fortran or C. After being
successfully tested, a program will be translated into Fortran to give a faster
version. Full exploitation of parallelism will then be the next step.

In Section 2, we give the definition of a regular and a Dirichlet five-point
stencil, together with a list of our test problems. In Section 3, we describe
the MATLAB environment in which the experiments were carried out. We
have been testing a beta-version of the MATLAB 4 package. In the same
section we describe some basic subroutines on which the sweeping programs
are built. Section 4 covers one-stage, two-direction sweeping. Section 5 is
devoted to a two-stage algorithm. In Section 6, we apply partial sweeping
to a periodic Helmholtz operator. Section 7 discusses how the method of
continuation can be used to invert stencils that are close to a stencil whose
inverse has already been computed. Finally, in Section 8, we briefly discuss
banded matrix inversion. We leave this discussion until last because the task
of inverting such a matrix is conceptually the same of inverting a five-point
stencil, and indeed is even simpler.

Our numerical experiments have shown that the sweeping method is
easily implementable and is efficient for a large class of problems. Further
work will focus on the feasibility of using parallelism to handle large scale
problems on the larger supercomputers.



2 Problem Definition for Five-Point Stencils

The objects of our study are matrices of dimension ny X nz. Typically, such
a matrix arises from discretizing a partial differential equation. A matrix
z may represent the function values of the dependent variable at the grid
points of a rectangular domain. Another matrix, p, may represent given
potential values at the same grid points. Thus, we sometimes refer to an el-
ement (more precisely, the location of the element) of p or of z as a point. To
avoid long expressions, we shall use, whenever there is no risk of confusion,
the same symbol p to denote a generic element p(¢,j) of the matrix. Points
in the first and last rows or columns are called boundary points, while the
rest are called interior points.

Fach interior point has four neighbors, p—, p—, p!, and p!, understood
in the usual sense. For boundary points, the interpretation of some (two if
it is a corner point and one otherwise) of the neighbors is dictated by the
boundary conditions of the original partial differential equation. In most
of our experiments, we define the left-hand neighbor of a point in the first
column to be the last point in the same row, the right-hand neighbor of
a point in the last columns to be the first point in the same row, and so
on. In other words, the relationship of neighborhood is continued across a
boundary by wrapping around to the opposite boundary. As explained in [3],
the periodic Ginzburg-Landau model that Du, Gunzburger, and Peterson
described in [2] leads to a different definition for the lower neighbor of a
point on the first row (and the upper neighbor of a point on the last row).

A five-point stencil is a linear combination between each point and its
four neighbors:

Slp] = Cp+ Lp~ + Rp~ + Dpt + Up', (2.1)

where (', L, D, and U are given matrices of dimension ny X nz. A nonho-
mogeneous stencil equation is

Sl = b, (2.2)

where b is a given ny X naz matrix. It is a linear system of ny X na equations,
each of which is referred to as a point equation. Our objective is to solve
for z, effectively and accurately.



We make the following assumptions:

1. All elements in L (D) not in the first column (row) and all elements
in R (U) not in the last column (row) are nonzero.

2. The linear operator representing the five-point stencil is nonsingular.
Indeed, in most cases of application, the operator is Hermitian and
strictly positive or negative definite.

If the first column of L and the last column of R are both zero, we call
the stencil a Dirichlet stencil. In that case, boundary points on the left have
no effect on boundary points on the right and vice versa. We can, therefore,
consider that points on the left boundary have no left neighbors and points
on the right boundary have no right neighbors. Alternatively, we can con-
sider that points on the left boundary have imaginary right neighbors that
assume zero values. It is according to this second interpretation that we use
the term Dirichlet. Note, however, that other types of separated boundary
conditions on the partial differential equation, such as the Neumann and
Robin types, also lead to Dirichlet stencils.

Test Problems

Problem I. The classical Dirichlet problem for the two-dimensional Pois-
son equation

Au=f (2.3)

on a rectangular domain, upon discretization over a uniform grid, gives
the usual five-point stencil with coefficients {—4,1,1,1,1} except at the
boundary, where one or two of the appropriate coefficients becomes zero.
More specifically, we pick for our first test problem

C=-4, D=1, U=1, (2.4)
L(:,1)=0, L(:,2:nz)=1, (2.5)
R(:,nz)=0, R(:,l:nz—-1)=1 (2.6)

For all our test problems, we take

b=1. (2.7)



Problem II. The generalized Helmholtz equation
Vip(z)Vu)—Au=f, A>0, (2.8)

gives rise to a stencil with nonconstant coefficients, whenever p(z) is not a
constant. We simulate this class of problem by perturbing the matrix C' in
Problem 1. For nz = ny = 16, we take

Clivj) = =4 == (2.9)

The other coeflicients remain the same.

Problem III. To get a non-Dirichlet test problem, we take the stencil of
Problem II and change the first column of L and the last column of R to
ones.

Problem IV. For a discussion of the derivation of the discrete Ginzburg-
Landau operator that has motivated our study, see [3]. Other numerical
approaches include the recent work of Du, Gunzburger, and Peterson (finite
element method) [?] and Garner et al. (optimization techniques) [4]. We
choose for our sample test problem the following parameters:

1. The vortex number nv = 2.

2. Domain size is L, X L, = 3v/3 units x 3v/3 units.

3. Number of grid points are equal for both axes, N = nz = ny.

4. The first component of the vector potential A is a linear function with
A(1,:)=0and A(N,:) =g, where ¢ = 2r /L, = 2.418399.

5. The second component of the vector potential B = 0.

The coefficients for the stencil are found by using the formulas given in [3].
For reference, we list below those corresponding to N = 40:

1. C(i,j) = -4

2. L = R. Fach row is constant, and the elements in each columns are
as follows:



1.0000 1.0000 + 0.0079 i 0.9999
0.9997 + 0.0236 i 0.9995 + 0.0314 i 0.9992
0.9989 + 0.0471 i 0.9985 + 0.0550 i 0.9980
0.9975 + 0.0706 i 0.9969 + 0.0785 i 0.9963
0.9956 + 0.0941 i 0.9948 + 0.1019 i 0.9940
0.9931 + 0.1175 1 0.9921 + 0.1253 i 0.9911
0.9900 + 0.1409 i 0.9889 + 0.1487 i 0.9877
0.9864 + 0.1642 i 0.9851 + 0.1719 i 0.9837
0.9823 + 0.1874 i 0.9808 + 0.1951 i 0.9792
0.9776 + 0.2105 i 0.9759 + 0.2181 i 0.9742
0.9724 + 0.2334 i 0.9705 + 0.2411 i 0.9686
0.9666 + 0.2563 i 0.9646 + 0.2639 i 0.9625
0.9603 + 0.2790 i 0.9581 + 0.2865 1 0.9558
0.9535 + 0.3015 1

This list gives L(1,7), L(2,7), and L(3,j) in the first
L(5,j7), L(6,j) in the second row; an so on.

. D(i,7) = 1 forall i« > 1,5 > 1, and the first row is
following:

1.0000 0.9511 + 0.3090 i 0.8090
0.5878 + 0.8090 1 0.3090 + 0.9511 i 0.0000
-0.3090 + 0.9511 i -0.5878 + 0.8090 i -0.8090
-0.9511 + 0.3090 i -1.0000 + 0.0000 i -0.9511
-0.8090 - 0.5878 1 -0.5878 - 0.8090 i -0.3090
-0.0000 - 1.0000 i 0.3090 - 0.9511 i 0.5878
0.8090 - 0.5878 i 0.9511 - 0.3090 i 1.0000 -
0.9511 + 0.3090 1 0.8090 + 0.5878 1 0.5878
0.3090 + 0.9511 1 0.0000 + 1.0000 i -0.3090
-0.5878 + 0.8090 i -0.8090 + 0.5878 i -0.9511
-1.0000 + 0.0000 i -0.9511 - 0.3090 i -0.8090 -
-0.5878 - 0.8090 i -0.3090 - 0.9511 i -0.0000
0.3090 - 0.9511 1 0.5878 - 0.8090 i 0.8090
0.9511 - 0.3090 i

U(t,j)=1for all i < N,7 > 1, and the last row is the
the first row of D.

.0157
.0393
.0628
.0863
.1097
.1331
.1564
L1797
.2028
.2258
. 2487
.2714
.2940

+ 4+ + + + + + + + + + + +
O O O OO O OO OO O OO0
He He He He He He He He He He e He 1

row; L(4,7),

given by the

.5878
.0000
.5878
.3090
.9511
.8090
.0000
.8090
.9511
.3090
.5878
.0000
.5878

+ + +

+ +

+
O, OO OO OO0 O OO

He He He He He He He He He He He He 4

conjugate of



3 MATLAB Environment and Some Basic Func-
tions

We used for our experiments the Beta 3 Version of MATLAB 4. This is cho-
sen over the previous release MATLAB 3.5 because of its better performance
and enhanced graphics capabilities. Although the new graphics features are
not involved in the part of the project we are reporting here, they are used
in our overall study of the Ginzburg-Landau equations.

The coefficients C, L, R, D, and U for the various problems are stored
in different data files to be loaded either via the startup.m file or via the
load command. For those experiments described in Sections 4 and 5, we
have only one set of coefficients to deal with each time. It is convenient to
declare these coeflicients as global variables, so that we do not have to pass
them as arguments to function subroutines.

The declaration of global variables inside a function is a new feature of
MATLAB 4. In previous versions, a global variable had to be declared at
the highest interactive level. Thus, all function calls treated that variable
as global. A lurking danger was that a user could unknowingly invoke some
function that contained a variable with the same name, but was meant to be
a local variable. The new rule in MATLAB 4 is that unless the variable is
also declared to be global inside a function, the external declaration has no
effect. We, however, prefer that the requirement for an external declaration
be eliminated, since each function already has its own. Perhaps the purpose
of having this requirement is to allow functions to share semi-global variables
among themselves, but not with the workspace. We believe that this is a
dangerous practice (a user may have forgotten that he has already used a
global variable with the same name in a function he defined months ago) and
should be discouraged. In principle, a function should share a global variable
with another function through a common global variable in the workspace.
Furthermore, functions having global variables should be special-purpose
functions used only for a special project.

For the partial sweeping algorithm discussed in Section 6, the situation
is different. It is no longer useful to declare the original coefficients as global
variables, since we work with more than one sets of submatrices instead
of the original matrices. All the functions described below will need to be
rewritten to put the coeflicients back into the input argument list.



3.1 S.m — stencil operator

% y =5S(p) To compute the image of p under the
% stencil S

%

% CLRDU should exist in workspace

function y=S(p)
global CL R DU
[ny nxl=size(p);

y = C.*p + L.*p(:,[nx,1:nx-1]) + R.*p(:,[2:nx,1]) + ...
D.*p([ny,1:ny-11,:) + U.*p([2:ny,1],:);

The main use of this function is to determine how accurately an approxi-
mate solution za satisfies the given stencil equation. One can use the residue

bb = b - S(za)

to obtain a correction zc to the approximate solution, simply by solving the
residue equation

S(zc) = bb.

The following is the modified version that includes the coefficients as
input arguments (needed for the partial sweeping algorithm).

function y=S(C,L,R,D,U,p)
[ny nxl=size(p);

y = C.*p + L.*p(:,[nx,1:nx-1]) + R.*p(:,[2:nx,1]) + ...
D.*p([ny,1:ny-11,:) + U.*p([2:ny,1],:);

Since modifications for the other functions in the rest of the section are
similar and straightforward, they are omitted.



3.2 swp.m — basic column sweeping operator

% y = swp(x,b,n1,n2) Basic sweeping operation for

% Sx = b from column nl1 to =n2
% If n2==0, sweep —-> 1 column

% < <—-

function y=swp(x,b,nl,n2)
global CL R DU

[ny nx]l=size(x);

y=x;
if ni<=n2
if n2==0, n2=n1; end
for ii=ni-1:n2-1
if ii==1 yL=y(:,nx); else yL=y(:,ii-1); end
y(:,ii+1) = (b(:,i1)-(C(:,ii) .*y(:,ii)+L(:,i1) . *%yL+ ...
D(:,ii) .*y([ny,1:ny-1],ii)+ ...
U(:,ii) .*y([2:ny,1],11)))./R(:,ii);
end
else
if n2<0, n2=n1; end
for ii=ni+1:-1:n2+1
if ii==nx yR=y(:,1); else yR=y(:,ii+1); end
y(:,ii-1) = (b(:,i1)-(C(:,ii) .*y(:,ii)+R(:,ii).*yR+ ...
D(:,ii) .*y([ny,1:ny-1],ii)+ ...
U(:,ii) .*y([2:ny,1],11))).lemma(:,ii);
end
end

We start with a matrix x that does not satisfy the stencil equation
S[zl=b. The idea of the sweeping method is to alter the columns (rows)
of x to satisfy as many of the point equations as possible. For column
sweeping, there are two directions to choose from: towards the right or to-
wards the left. In the former case, a column, say, column j, is altered so
that all point equations pertaining to the column j — 1 are satisfied. When
sweeping to the left, equations pertaining to the column j + 1 are used.

The function swp sweeps the matrix x by altering columns from n1 to
n2, inclusively, using b as the righthand side of the stencil. The direction



of sweeping is determined by the relative sizes of the arguments n1 and n2,
except in the case when only one column is to be swept; then n1 is equal to
n2, and the default direction is to the right. For the case of sweeping only
one column, we provide an alternative way to specify the direction: to the
left if n2 = 0 and to the right if n2<0.

Note that in the calculation of a new column in each sweeping step, the
elements can be computed in parallel.

We point out a pitfall of numerical experimentation. Rounding errors, if
not carefully controlled, can yield results contradictory to theoretical predic-
tions. Sweeping is one of those procedures that has to be closely scrutinized.
Suppose that one starts with a matrix x and sweeps it from column n1 (to-
wards the right) to column n2 to get a new matrix y. If one now sweeps y
from column n2-2 back to n1, one should, theoretically, make no changes to
the columns of y. However, when we experimented with the simple Lapla-
cian stencil of size 40 x 40, and x(i,j)=0 except x(1,1)=1, we found that
the two matrices differ by 4.2 x 10°%. In fact, the magnitude of the elements
in the last column of x is on the order of 10?°, an indication of the rate of
growth by sweeping through 40 columns. Sweeping back from the right will
magnify any error by an equally large factor.

Our next step is to build a more user-friendly version of the basic sweep-
ing operation. The input format of a MATLAB function is rather flexible.
The function can be called with fewer arguments than specified in its defini-
tion, and the data types of the arguments are not rigidly fixed by declarations
in the subroutine, as in Fortran or C subroutines. This flexibility allows one
to design functions that can assume default values whenever certain argu-
ments are omitted from the input list. Unfortunately, this flexibility can
also be a source of extremely subtle bugs, if used carelessly.

10



3.3 sw0 — a more flexible sweeping subroutine

% y = sw0(x,n1,n2) sweep matrix x

% sw0(x,b,n1,n2) from column nl to n2 and
% sw0(x,n1,n2,ml,m2) from ml to m2

% sw0(x,b,n1,n2,m1,m2)

%

% b rhs, default 0 if omitted

% ni <= (>) n2 sweep to the right (left)

% n2 == (<) 0 sweep 1 column right (left)

function y=sw0(x,b,nl1,n2,m1,m2)
global CL R DU

if nargin==3 if max(size(b))==
y = swp(x,0%x,b,nl);
else
y = swp(x,b,n1,0);
end

elseif nargin==4 y = swp(x,b,ni1,n2);
elseif nargin==5 y = swO(x,0%x,b,n1,n2,mi);
else z = swp(x,b,n1,n2);

y = swp(z,b,ml,m2);

end

Many of the sweeping operations used in the algorithms involve simulta-
neous sweeping, mostly in two opposite directions on two separate portions
of the same matrix. Also, in some cases, the sweepings are done on the
homogeneous stencil, corresponding to taking the righthand side b=0. The
function swO is designed to cover these two situations in the most user-
friendly way. If b is omitted in the argument list, the homogeneous stencil
is assumed. If two column ranges are specified, then two sweepings will be
done; otherwise, only one sweeping is needed. Obviously, swO is based on
SWp.

In the MATLAB implementation, when two sweepings are requested,
they are performed in serial. They should be performed simultaneously on
a parallel computer.

11



3.4 err.m — stencil error for one or two columns

% e = err(x,b,n1,n2) compute error Sx - b for two
% err(x,nl) or one column; b = 0 (default)
% err(x,nl1,n2)

function e=err(x,b,n1,n2)
global CL R DU

if nargin==2
n=b; b=0%*x;
elseif nargin==3
if max(size(b))==1, n=[b ni1]; b=0*x; else n=nl; end
else
n=[n1 n2];
end

[ny nx]l=size(x);

e=[1;
for ii=n
if ii==1, xL=x(:,nx); else xL=x(:,ii-1); end
if ii==nx, xR=x(:,1); else xR=x(:,ii+1); end
e1=C(:,ii).*x(:,1i)+L(:,ii).*xL+R(:,1i1).*xR+ ...
D(:,ii) .*x([ny,1:ny-1],ii)+ ...
U(:,1ii) .*x([2:ny,1],1i1)-b(:,1i);
e = [e; ell;
end

After a sweeping operation on a matrix, some point equations, typically
in one or two columns, still may not be satisfied. The function err computes
the error Sx-b. The answer is given as a column vector of length ny or 2ny
according to whether one or two columns are involved. The function assumes
a default homogeneous stencil if the input argument b is omitted.

12



4 Two-Direction Sweeping

We skip the simple one-direction sweeping, which works well in most cases
for N up to about 12.

Program: Two-Direction Sweeping for Solving S[z] = b

Compute the rectifying matrix RR :
for i from 1 to ny
x(i,nx/2) = 1, x = 0 otherwise
sweep x with the homogeneous stencil
error vector from first and last column
is added to RR
end
repeat using x(i,nx/2+1) =1

Construct a test solution y :
y=20
sweep y outward from the two columns in the
center
compute error vector er from first and last
columns

Construct the solution z :
— RR \ er gives the two center columns of z
sweep outward to compute z

We shall use the name rectifying matrix to refer to both the matrix RR
and its inverse. The same holds for other rectifying matrices introduced
later. The context will ensure that no confusion arises.

We found that sweeping outward was more suitable for general Dirich-
let stencils. The main reason is that the solution of a Dirichlet stencil is
more sensitive to adjustments made in the first and last columns than those
made in the central columns. The rectifying matrix for computing the cen-
tral columns is, therefore, better conditioned than that for computing the
boundary columns. As will be explained in Section 6, a modification is
called for if the sweeping is to be incorporated as a subroutine within a
partial sweeping algorithm.

13



Our implementation splits the algorithm into two M-files, the first to find
RR and the second to solve for z. The former is the more time-consuming
part of the the algorithm. Once we have RR computed, only the second
M-file is needed to solve different equations for the same stencil.

% arr.m
h
% Routine to compute the rectifying matrix RR

A

% Input (from workspace) :-—

%

h CLRDU

%

% Output :-

%

% RR RRI x (last sweeping matrix)
RR=[1;

for j=1:ny

x=zeros(ny,nx); x(j,1)=1;

x=sw0(x,2,nx/2);

RR = [RR err(x,nx/2,nx/2+1)];
end

for j=1:ny
x=zeros(ny,nx); x(j,nx)=1;
x=sw0(x,nx-1,nx/2+1);
RR = [RR err(x,nx/2,nx/2+1)];
end

RRI = inv(RR);

This subroutine consists simply of two loops to find the 2ny columns
of RR. Notice that each sweeping cycle of x is performed completely inde-
pendently of the others. Parallel computation is, therefore, the correct route
to go.

The inverse of RR is computed once and for all if it is known before-
hand that there is more than one equation of the same stencil to be solved.
Otherwise, the command

rr = - RR \ er;

14



can be used in the second M-file. This command computes rr by using
Gaussian elimination.

% asw.m

h

% Simple two-sided sweeping for solving Sz = b
h

% Using module subroutines sw0 and err

% and previously computed RR

h

% Input (defined in workspace):-—

A

% bCLRDU

% RR computed using arr.m

%

%  Output:

% y  trial solution with y(:,1)=y(:,N)=0
% er errors in the 2 central columns in vy
% rr the 2 central columns in =z

% z  solution

% Initial sweeping to get trial solution y and error er

y=zeros(ny,nx) ;
y=sw0(y,b,nm-1,1,nm+2,nx);
er=err(y,b,1,nx);

% Back sweeping to compute solution z

rr=-RRI*er; % OR rr=-RR\er;
z=zeros (ny,nx) ;

z(:,om)=rr(1l:ny); z(:,nm+1)=rr(ny+1:2*ny);
z=sw0(z,b,nm-1,1,nm+2,nx);

Theoretically, these two subroutines are all that is needed to compute the
solution of the stencil equation. A solution-refining routine to be described
below can be used if the accuracy of the computed answer is not satisfactory.

15



Here are the results from some typical tests:

Problem | Grid Size | maxz | max{|b— 5z|} | Flops 1 | Flops 2
I 16 x 16 36.0 1.4922 x 1078 92817 32783
II 16 x 16 | 3.9540 | 1.5320 x 1079 92817 32603
11T 16 x 16 | 4.7990 | 1.9568 x 10~? 92817 32575
v 16 x 16 | 3.7697 | 5.6694 x 1071° | 360785 | 139211
I 40 x 40 | 213.35 142.9461 1424361 | 408453
v 40 x 40 69.37 37.7422 5737721 | 1689627

If one examines the full residue matrix rather than just its maximum, one
should be more impressed because the errors are concentrated only on the
two boundary columns; the residues for the interior columns are practically
nil, a logical consequence of the sweeping operation. The average residue, or
residue in the mean, is therefore much smaller than mres = max {|b — Sz|}.

The last two columns in the table give the number of floating-point
operations for the two subroutines, respectively. The significantly greater
number of flops needed for Problem 1V is due to the presence of complex
number operations. The number of flops executed by a subroutine, however,
is not proportional to the elapse time, which can be determined by using the
MATLAB commands tic and toc. Even thought arr requires only about
three times as many flops as asw, the execution time for arr is between 15
to 40 times as great as that of asw, depending on the current load of the
machine. The subroutine asw ran extremely fast for small nx and ny.

Accuracy falls off as the size of the grid increases, as evidenced by the
last two rows of the table. Errors accrue in the inversion of the matrix RR,
which has very large entries, and in the unstable sweeping operation. One
may be tempted to conclude that the solutions for the last two problems
are even worse than the zero matrix, which gives a maximum residue of 1.
Nevertheless, one must bear in mind that, for the zero matrix, there is a
residue of 1 at every grid point, whereas the seemingly appalling residue of
z appears only at the boundary points.

16



The solution z can be refined by using another subroutine that solves
the residue equation. In Section 7, we shall see that the same technique can
be used to obtain the inversion of nearby stencils.

% Subroutine to refine a computed solution to Sz = b
h
h
h
h
h
h
h
h
h
h
h
% Input (defined in workspace):-—

h

% bb zz C L R D U RR (computed using arr.m)
h

%  Output:

% b  residue

% z solution of residue equation
% zz 1improved solution

If this is the first time the subroutine is called
after z 1is computed by using asw.m, copy b and
Z to the variables bb and zz first by using

If more than one iteration is needed, run the subroutine
in a "for" statement

* K X K K X X ¥

b=bb-S(zz);
asw
ZZ=2ZZ+%Z;

Applying this refinement subroutine just once to the problem in the first
row of the previous table, we obtained an improved solution with mres =
2.8422 x 1074, Examining the solution z shows that accuracy is really up
to the last digit allowable by machine accuracy. Improving the solution
to the problem in the second row gave mres = 3.9968 x 10~!%. In both
cases, more applications of the refinement subroutine do not lead to further
improvement, as the limit of the machine accuracy is already reached.

For the Ginzburg-Landau operator with N = 40, one application of the
refinement subroutine gave an improved solution with mres = 1.54220 X
1078, A second iteration gave mres = 1.24130 x 10712,

17



It is easy to incorporate the refinement subroutine into the second sub-
routine in the usual way so that the solution will be automatically refined
either until a specified accuracy is attained or until no further improvements
are possible.

If different equations are to be solved for the same stencil, it is worthwhile
to perform the refinement on the rectifying matrix RRI, especially in the case
when many refinement steps are needed, because the process can be speeded
up if we use the newly improved RRI in the next iterative step of refinement.
In theory, each column in RRI is the two center columns of the solution
to the stencil equation in which the righthand side is zero at all but one
appropriate point in the two boundary columns, at which the value is 1. By
refining the solution to this system, we can obtain a refined column for RRI.
The columns can be refined in parallel.

18



5 Two-Stage Sweeping for Dirichlet Stencils

The refinement procedure described in Section 4 cannot take care of round-
ing errors arising from the rather unstable sweeping process; an error can
grow exponentially as the number of columns swept increases. A multistage
algorithm breaks up the sweeping into stages, each over a small range of
columns. The method is still a direct one, as opposed to an iterative scheme
like the partial sweeping of the next section. There is more than one way to
implement a multistage algorithm. We describe only one of the approaches
we have tested.

We divide the nx columns into four groups: (1) columns 1 to n1-1, (2)
ni to nm, (3) nm+1 to n2, and (4) n2+1 to nx. In general, the four groups
need not be equal in size. When nx is a multiple of 4, division into four
equal groups corresponds to choosing nl1 = nx/4 + 1, nm = nx/2, and n2
= 3nx/4. For example, when nx = 40, we use nl =11, nm = 20, and n2 =
30.

We shall make use of columns n1 and n2 as initial columns in the final
step of backward sweeping. The rectifying matrix BRR is, therefore, defined
to be that relating the values of the solution z in these two initial columns
to the errors in the two center columns.

Since the two initial columns are not adjacent to each other, we cannot
really start backward sweeping right away; we must have a means to deter-
mine columns n1-1 and n2+1. The matrices BI1 and BI2 computed in the
first part of the algorithm are used for that purpose. They are found by
matching the errors obtained by sweeping the first (last) quarter of the grid
with n1-1 and n1 (n2+1 and n2) as initial columns.

The rectifying matrix BRR is then computed by sweeping the second and
third quarters of the grid, inwards from columns n1 and n2. Note that in
this implementation of the algorithm, the second stage of sweeping depends
on the outcome, namely, the matrices BI1 and BI2, from the first stage,
and hence the two stages must be performed in serial. A modification can
be made to carry out the second stage in parallel without prior knowledge
of BI1 and BI2. The tradeoff is the inversion of a larger matrix of dimen-
sion 2nx X 2nx in the second stage. If there are more stages and if parallel
processing is available, substantial speedup can be achieved. The implemen-
tation we give here is analogous to the method of marching, in the language

19



of shooting methods, and the modification we alluded to is analogous to
multiple shooting. For references to these shooting techniques, see [1].

Program: Two-Stage Sweeping for Solving S[z] = b

Compute the first-stage rectifying matrices BRR1 and
BRR2 and the continuation matrices BI1 BI2 :
BI1 and BI2 give columns nl—-1 and n2+1
when columns nl and n2 are known

Compute the second-stage rectifying matrix BRR :
this matrix relates the errors in the two
center columns to the choice of initial
sweeping values in columns nl and n2

Construct a first-stage test solution y that is error free
in the first and last quarters :
y=20
sweep outward from columns nl and n2
compute errors from first and last columns
use er, BRR1, and BRR2 to determine columns
nl and n2 of y

Construct the solution z :
sweep second and third quarters
compute errors in the two center columns
use BRR to determine columns nl and n2
use BI1 and BI2 to determine columns
nl-1 and n2+1
sweep to compute z

The construction of the solution z is also carried out in two stages. In
the first stage, we use the matrices BRR1 and BRR2 to smooth out as much as
possible the errors in the first and last quarters, rather than sweeping them
and thus magnifying them all the way to the center columns.

As before, we split up the program into two subroutines; the first yields
the rectifying matrices and the second the solution. If required, a third

subroutine for refining the solution can be added just as in the previous
section.

20



% brr.m

h

% Routine to compute the rectifying matrices
% for the Two-stage Two-way Sweeping

A

% Input (from workspace) :-—

%

% CLRDUnx ny nl n2 om

%

% Output :-

%

% BRRI BRR BRR1 BRR2 BI1 BI2

% bil bi2 x (last sweeping matrix)

BRR1=[]1; BRR2=[]; bi1=[]; bi2=[];
for j=1:ny
x=zeros(ny,nx); x(j,n1-1)=1; x(j,n2+1)=1;
x=sw0(x,n1-2,1,n2+2,nx);
BRR1=[BRR1 err(x,1)];
BRR2=[BRR2 err(x,nx)];
x=zeros(ny,nx); x(j,n1)=1; x(j,n2)=1;
x=sw0(x,n1-2,1,n2+2,nx);
bit=[bil err(x,1)]1;
bi2=[bi2 err(x,nx)];

end
BI1 = -BRR1\bil;
BI2 = -BRR2\bi2;
BRR=[];
for j=1:ny

x=zeros(ny,nx); x(j,n1)=1; x(:,n1-1)=BI1(:,

x=sw0(x,n1+1,nm);

BRR = [BRR err(x,nm,nm+1)];
end
for j=1:ny

x=zeros(ny,nx); x(j,n2)=1; x(:,n2+1)=BI2(:,

x=sw0(x,n2-1,nm+1);
BRR = [BRR err(x,nm,nm+1)];
BRRI = inv(BRR);

end

BRR BI1

i);

i);

BI2

21




The second subroutine solves the stencil for a given righthand side b:

% Two-stage Two-sided sweeping for solving Sz = b

h

% Using module subroutines sw0 and err

% and previously computed BRRI BRR BI1 BI2
h

% Input (defined in workspace):-—

A

h bCLRDU

% BRR BRR1 BRR2 BI1 BI2 computed using brr.m

%

%  Output:

% y y2 trial solutions

% erl er2 er sSWeeping errors

% b2 residue

% rr correction for solution
% z solution

% First-stage sweeping to compute trial solution ¥y
% in 1st and 4th quarters

y=zeros(ny,nx) ;
y=sw0(y,b,n1-2,1,n2+2,nx);
eri=err(y,b,1); er2=err(y,b,nx);
y(:,n1-1)= -BRR1\eri;

y(:,n2+1)= -BRR2\er2;
y=sw0(y,b,n1-2,1,n2+2,nx);

% Compute residue
b2=b-S(y);

% Second-stage sweeping to get trial solution y2
% in 2nd and 3nd quarters

y2=zeros(ny,nx);
y2=sw0(y2,b2,n1+1,nm,n2-1,nm+1);
er=err(y2,b2,nx/2,nx/2+1);
% to be continued ...

22




rr=-BRR\er;
z=zeros (ny,nx) ;
z(:,n1)=rr(1:ny); z(:,n2)=rr(ny+1:2#*ny);
z(:,n1-1)=BIi*rr(1:ny); z(:,n2+1)=BI2*rr(ny+1:2#*ny);
z=sw0(z,b2,n1-2,1,n2+2,nx);

% Back sweeping to compute solution z

% Combine with first trial solution y

z =y + sw0(z,b2,n1+1,nm,n2-1,nm+1);

% ... continue

Test results are recorded in the following table.

Problem | Grid Size | maxz | max{|b— 5z|} | Flops 1 | Flops 2
I 16 x 16 | 36.0 | 7.3825x 10712 | 127920 | 45591
I 16 x 16 | 3.9540 | 1.0534 x 1072 | 127920 | 45489
IV* 16 x 16 | 3.5734 | 4.1064 x 10~13 | 546016 | 190469
I 40 x 40 | 210.00 | 2.7022 x 1075 | 1905064 | 543383
IV* 40 x 40 | 69.43 | 6.6991 x 1077 | 8363336 | 2256225
I 60 X 60 | 8.9116 | 7.4750 x 10=* | 6361240 | 1702789

* Since our two-stage algorithm applies only to Dirichlet stencils, Problem

IV used in this testing has been modified accordingly.

As will be explained in Section 6, if this two-stage subroutine is used in
a partial sweeping algorithm that employs two overlapping domain decom-

positions, the first-stage sweeping to find y can be omitted.

23




6 Partial Sweeping

Partial sweeping is an alternative to multistage sweeping for very large grid
sizes. It is an iterative algorithm that is highly parallelizable. It is, how-
ever, restricted to positive or negative definite (or, more generally, accretive)
stencils that have definite substencils. Fortunately, most stencils arising in
practice are of this type.

We use a Problem II stencil as an example:

nz =10, ny = 80, (6.1)
Clij)= —4—21=1 (6.2)
7] - 20 ? *
L=R=D=U=1 (6.3)

We use two different domain decompositions, each having four subdomains:

(1) columns 1 - 20, 21 — 40, 41 - 60, and 61 — 80.
(2) columns 11 - 30, 31 — 50, 51 — 70, and 71 — 80 plus 1 - 10.

We are no longer dealing with just one set of coefficient matrices, but
rather with various sets of submatrices of the coefficient matrices. For this
reason, the convenience provided by declaring the coefficient matrices as
global variables is not available anymore. Thus, all functions described in
Section 2 must be redefined, including the coeflicient matrices as input ar-
guments. Furthermore, it is more appropriate to rewrite the sweeping sub-
routine M-files (either those given in Section 3 or in Section 4) as functions,
to enable them to be applied to different subdomains. The task involves
nothing more than a careful record keeping of which variables are needed as
input and which variables will be generated as output.

In the following pseudo-code, we add a “subscript” k (in principle, k runs
from 1 to 8) to various variables to indicate that they are associated with the
kth subdomain. For instance, the coefficient matrices of the subdomains are
denoted by Ck, Lk, etc. Incidentally, MATLAB does not have a convenient
way to index matrices, since arrays of dimensions more than two are not
supported. One can still simulate (in a slightly awkward way) an array of
matrices by concatenating the index (first turned into a string by using the
command num2str) to the matrix name and then eval the entire string.

24



Program: Partial Sweeping for Solving S[z] = b

Generate the 8 sets of partial coefficient matrices :
extract the appropriate submatrices
equate the first column of Lk and the
last column of Rk to zero

Compute the rectifying matrices RRIk :
for j from 1 to 8
RRIk = arr(Ck,Lk,Rk,Dk,Uk)
end

Repeat until bb = max(S[z] - b) < desired accuracy :
sweep subdomains 1, 2, 3, and 4 (odd cycles)
sweep subdomains 5, 6, 7, and 8 (even cycles)

by using z = asw(bb,Ck,Lk,Rk,Dk,Uk,RRIk)
on the reduced residue equation

End repeat

Results for the test problem are recorded below. The correct algorithm
sweeps the stencil using two domain decompositions alternatively, in suc-
cessive cycles. The maximum residue after each cycle is given in the first
column. If only one decomposition is used throughout all the cycles, we still
got convergence, but the rate was slow. These results are listed in the other
two columns for the sake of comparison.

mres
cycles

alternate only (1) only (2)

1 2.3786 2.3786 1.5972

2 0.0029 0.4726 0.9638

3 3.6301x107° 0.3453 0.6072

4 2.9451x107% | 0.1064 0.3743

5 3.2348 x 10710 0.0629 0.2327

6 2.6557x 1071 | 0.0284 0.1440

25



In addition, we obtained

max(z) = 4.7525, flopsl = 365528, flops2 = 54388.

The first flop count, flopsl, is for the set-up part of the program — to
find the submatrices and the corresponding rectifying matrices. The second
flop count is for each cycle of partial sweeping.

A careful scrutiny of the algorithm reveals that the two-direction sweep-
ing implementation given by arr and asw is not best suited for partial sweep-
ing, even though it is good enough for its original purpose. In all the cycles
beyond the first one, the nonhomogeneous part of each residue equation has
“support” only on the two center columns of each subdomain. The subrou-
tine asw sweeps these errors towards the boundary before determining the
initial columns for the correct solution. A better way is to find a differ-
ent rectifying matrix that gives the initial columns directly from the errors
on the two center columns — in a way analogous to the Green’s function
used in solving elliptic boundary value problems. Not only is the work for
sweeping the errors saved, but any rounding error that may occur during
the sweeping can be avoided. We omit the simple modifications needed.

Similarly, if a two-stage sweeping subroutine is used for the partial sweep-
ing algorithm, except in the first cycle, the first-stage sweeping used to find
y is not needed.

26



7 Perturbed Stencil and the Method of Contin-
uation

In the numerical solution of the Ginzburg-Landau equations arising from
superconductivity, Newton’s method is applied to the set of nonlinear equa-
tions. The stencil equation given by the discrete Ginzburg-Landau operator
that constitutes our test Problem IV is only one portion of the equations to
be solved in one of the iterative Newton steps. As the computational pro-
cedure progresses, the Ginzburg-Landau stencil changes. Variable stencils
also arise in time-dependent systems.

If changes in the stencil coeflicients are gradual, we can find the inverse
of a new stencil from the known inverse of the previous stencil quickly by
using the refinement subroutine described in Section 4. Let S be a stencil
for which we have determined an accurate rectifying matrix RRI. We are
given a new stencil T such that, under some appropriate operator norm,
IS7LA] = ||SYS — T)|| is small. The new stencil equation to be solved is

T[z] = (54 A)[z] =b. (7.1)
The refinement process is related to the fixed-point iterative scheme

e = S7Yb — Alzpi]). (7.2)

Alternatively, we can regard RRI as an approximate rectifying matrix for
the new stencil, and use the technique discussed after the refining subroutine
in Section 4 to improve RRI to give an accurate rectifying matrix for 7.

Even if the new stencil is not sufficiently close to 5, the technique of
continuation can sometimes be used. One simply connects S and T by a
homotopy T'(t) = S+4(T —5),0 <t < 1, and computes the inverse of T'(%;)
for a suitably chosen sequence of numbers ¢; € (0,1) with the final choice
tm = 1.

27



8 Banded Matrices

One attractive feature of the simple one-direction sweeping algorithm for
the Dirichlet stencil is that the bulk of the work is in computing the in-
verse of one single matrix RR of dimension ny X ny, instead of the inverse
of a sparse matrix of dimension (nz)(ny) X (nz)(ny), The more sophisti-
cated two-direction sweeping for a general stencil requires the inversion of a
2ny X 2ny matrix — the amount of work is about eight times greater but
still manageable. Using stages introduces substantially more work. Finally,
partial sweeping that uses m subdomains in the form of vertical strips means
the inversion of m matrices each of dimension ny x ny. In view of the in-
crease in work as sophistication and grid size mount, an obvious question is
whether there is still advantage over conventional methods. A satisfactory
answer is possible only after further investigation.

Fortunately, if the width of a subdomain is small relative to its length,
the corresponding rectifying matrix to be inverted turns out to be banded.
It is well known that banded matrices need substantially less effort to invert
than full matrices. For a recent reference, see [5] by S. Wright.

Many banded matrices can be inverted by the method of sweeping —
in particular, those for which none of the elements in the band vanishes. A
discussion can be found in [3]. When the banded matrix is large, instability
of the sweeping will be a problem, and the technique of multi-stage or partial
sweeping can be applied as in the case of solving stencil equations. We omit
the details.

28



Acknowledgments | thank my colleagues Paul Plassmann and Steve

Wright for many useful discussions and for sharing their recent work [4] and
in making available their numerical codes.

References

[1]

Ascher, U. M., Mattheij, R. M. M., and Russell, R. D., Numerical So-
lutions of Boundary Value Problems for Ordinary Differential
Equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1991.

Du, Q., Gunzburger, M., and Peterson, J., Modeling and analysis of a
periodic Ginzburg-Landau model for type-1I superconductors, preprint,
1992.

Kwong, Man Kam, Sweeping algorithms for inverting the discrete
Ginzburg-Landau operator, Mathematics and Computer Science Divi-
sion Preprint MCS-P307-0492, Argonne National Laboratory, Argonne,
1., December 1991.

Garner, J., Spanbauer, M., Benedek, R., Strandburg, K., Wright, S.,
and Plassmann, P., Critical fields of Josephson-coupled superconduct-
ing multilayers, Mathematics and Computer Science Division Preprint
MCS-P281-1291, Argonne National Laboratory, Argonne, Ill., Decem-
ber 1991.

Wright, S., A parallel algorithm for banded linear systems, SIAM J.
Scientific Statistical Computing 12 (1991), 824-842.

29



